99 reasons I’m in ‘Limulus Love’

It’s no secret that I love those horseshoe crabs. Well someone on Twitter this week asked me why I am so crazy over them so I thought I’d take the time to outline 99 reasons I think Limulus polyphemus are a fascinating species.

  1. Three Nobel Prizes were awarded to scientists who did some or all of their research using horseshoe crab physiology.
  2. As far as the horseshoe crab’s Latin name translation, Limulus mean ‘askew’ and polyphemus is taken from a one-eyed giant in Greek mythology.
  3. The very intriguing name of Xiphosura (Greek ‘Xiphos’ meaning sword and ‘ura’ meaning tail) was given to the order of the Atlantic horseshoe crab and its three closest living related species.anatomyhsc
  4. There are 4 living species of horseshoe crabs and only one of those inhabits the western Atlantic waters – the Atlantic horseshoe crab. The other three are found in the Pacific Ocean.
  5. Samurai warrior helmets were modeled after the prosoma of a horseshoe crab.
  6. The body of a horseshoe crab (top picture) is divided into three parts – the prosoma, opisthosoma and telson (tail).
  7. Horseshoe crabs tend to be no more than 7-14” across.
  8. There once was a 50 foot long, 113,000 pound artificial reef horseshoe crab off the coast of NJ.
  9. Takeshi Yamada (pictured 3rd down) is a world-renowned artist often creating masterpieces using horseshoe crab molts.
  10. Horseshoe crabs have remained fairly unchanged over the past 300 million years (that’s 100 million years before there were dinosaurs on earth!).
  11. Horseshoe crabs are the perfect representative for Darwin’s theory that ‘the most adaptable species will prevail’.
  12. Horseshoe crabs are one of the world’s oldest animals.
  13. Before the last ice age, horseshoe crabs didn’t live much farther north than Florida.
  14. Scientists believe that horseshoe crabs (even perhaps many different species of them) were among the most dominant of animals 300 million years ago.
  15. Horseshoe crabs used to be called ‘horsefoot crabs‘ because their shell was thought to resemble a horse hoof.bcs_limuluslove
  16. Horseshoe crabs are sometimes referred to as a ‘living fossil’.
  17. Adult horseshoe crabs are often referred to as ‘walking museums’.
  18. While horseshoe crabs are opportunistic feeders, they are not aggressive animals!
  19. Most people do not understand the value of horseshoe crabs.
  20. People have organized workshops to understand bait alternatives for using horseshoe crabs to catch eels and conch.
  21. Horseshoe crabs are “the single most-studied invertebrate animal in the world”.
  22. While a horseshoe crab’s telson (tail) helps to create the appearance for an intimidating animal, they are not dangerous animals!
  23. Horseshoe crabs are so misleading – they’re actually more closely related to scorpions and spiders than crabs!
  24. Horseshoe crabs do not have mandibles, antennae, or pincers like true crabs.
  25. Native Americans ate horseshoe crab meat, used the shell to bail water, and used the tail as a spear tip.
  26. A juvenile horseshoe crab is easily identifiable because they look just like adults (see 4th picture down).
  27. Horseshoe crabs molt, or as naturalist Samuel Lockwood stated, “it is spewing itself from its own mouth”.
  28. Horseshoe crab molts are excellent shelter for mud crabs, sand shrimp, and spider crabs.
  29. A female’s lucky number is 17. That’s how many times they’ve molted before they’re ready to mate.
  30. As a horseshoe crab gets older and molts more often, they venture into deeper waters.
  31. Each time a horseshoe crab molts they grow an average on 25%.
  32. A horseshoe crab exoskeleton is made up of chitin – a material with wound healing properties.
  33. Horseshoe crabs spend most of their lives hidden.
  34. At the turn of the 19th century, horseshoe crabs were valued as a fertilizer, particularly for poultry, corn, and tomatoes.
  35. Today fishermen use horseshoe crabs as bait to catch eels and whelk.
  36. The threatened loggerhead sea turtle feasts on adult horseshoe crabs.
  37. American eel, killifish, silversides, summer flounder, and winter flounder rely on horseshoe crabs eggs and larvae for food.
  38. Horseshoe crab eggs are green.
  39. Horseshoe crab eggs are rich in fat and protein.
  40. Horseshoe crabs are big midnight snackers and love to feast on worms and mollusks.Horseshoe-crab-eggs-larvae-visible
  41. The mouth of the horseshoe crab will tickle your fingers if you’re lucky enough to have a job where you get to show people how they eat.
  42. Horseshoe crabs use their legs to chew up food and guide food into their mouths right in between their legs.
  43. Horseshoe crab legs are so strong they can crush a clam.
  44. Horseshoe crabs are expert javelinists – using their telson (tail) to act as a rudder and right itself when it tips over.
  45. The 13 pairs of horseshoe crab appendages are very multipurpose – using them for locomotion. burrowing, food gathering, and/or water flow.
  46. Horseshoe crabs use their dozen legs to swim upside down in the open ocean.
  47. Horseshoe crabs (predictably) participate in an annual orgy each May and June when thousands descend on the eastern Atlantic coastline to spawn (see fourth image down).
  48. Horseshoe crabs have a ritual of spawning during high tides of the new and full moons in May and June.
  49. Horseshoe crabs reach sexual maturity around the ages of 9-12.
  50. Horseshoe crabs tend to live a long time, usually 10 years or so after they’ve sexually matured.
  51. If horseshoe crabs can keep their gills moderately damp their survive to the next high tide in case they were to get hsc_orgystranded.
  52. Horseshoe crabs are great vessels for other animals.
  53. The highest concentration of horseshoe crab spawning on the Atlantic coast takes places along the Delaware Bay.
  54. Approximately 10 horseshoe crabs will survive to adulthood from each of the 90,000 eggs a female lays during her spawning cycle.
  55. A female horseshoe crab will lay almost 20 clutches of eggs each season.
  56. It’s a community effort making certain the eggs get fertilized. Often times many males with aggregate to a female (the males not attached are known as ‘satellite’ males.
  57. In adult males, the second pair of claws (having a distinguishable “boxing-glove” appearance) are used to grasp females during spawning.
  58. If it wasn’t for horseshoe crab eggs, many migratory shorebirds wouldn’t be able to survive.
  59. Many think there is a link between the decline in shorebird populations and horseshoe crab over-harvesting.
  60. The four most abundant species of shorebirds (relying on horseshoe crab eggs) along the Delaware Bay shore are the red knot, ruddy turnstone, semipalmated sandpipers, and sanderlings.
  61. Almost 50% of the red knot population uses Delaware Bay as mid-point stopover to consume thousands of horseshoe crab eggs. These robin-sized birds impressively travel from southern Argentina to the Canadian high Arctic to breed.
  62. The horseshoe crab-shorebird phenomenon helps to generate a large portion of the $522 million  annual ecotourism industry in Cape May County, NJ.satmenhsc
  63. The world’s leading authority of horseshoe crabs is Dr. Carl N. Shuster, Jr.
  64. In March of 2001, NOAA Fisheries Service established the Dr. Carl N. Shuster, Jr. Horseshoe Crab Sanctuary in federal waters off of the  Delaware Bay.
  65. Horseshoe crab blood is blue (see 7th picture down).
  66. Horseshoe crab blood is blue because it contains copper-based hemocyanin to distribute oxygen throughout their bodies (We use an iron-based hemoglobin to move oxygen around).
  67. Horseshoe crabs are essential to biotechnology.
  68. Horseshoe crabs are one of the pioneers in using marine organisms to save human lives.
  69. Horseshoe crabs are what we have to thank for our flu shots.
  70. Horseshoe crabs are sometimes referred to as ‘man’s best friend’.
  71. Horseshoe crabs are often captured to have their blood drained, all in the name of science.
  72. Horseshoe crabs can be released after they have their blood drained.
  73. Horseshoe crab blood cells (amoebocytes) congeal and attach to harmful toxins produced by some types of gram negative bacterias.
  74. Limulus Amoebocyte Lysate (LAL) is the name of the clotting agent made using their blood to detect microbial pathogens in medical intravenous fluids, injectable drugs, and supplies.
  75. The global market for LAL is approximately $50 million per year.
  76. The adaptation for the ability of the horseshoe crab’s blood to congeal in the presence of either living or dead gram negative bacteria has never been able to be reproduced.
  77. Horseshoe crabs have used in the development of wound dressings and surgical sutures.
  78. Horseshoe crabs have a body shape that poses difficulty for predators.wireddotcom_drainblueblood
  79. Horseshoe crabs have ten eyes.
  80. The vision of a horseshoe crab is equally as impressive at night as it is during the day with the use of their lateral eyes.
  81. With a pair of compound eyes, each with 1,000 black disks, horseshoe crabs can see to each side, ahead, behind, and above.
  82. Scientists have learned quite a bit about how human eyes function from research with cells found in horseshoe crab eyes.
  83. Horseshoe crabs have a lateral inhibition mechanism using their eyes which allows them to distinguish mates in murky water.
  84. Horseshoe crabs need a book to breathe, that is – ‘book gills‘ to be more specific.
  85. Horseshoe crab gills have small flaps resembling the pages of a book.
  86. Horseshoe crabs tell time with their tail.
  87. Horseshoe crabs have a heart that cannot beat on its own.
  88. Horseshoe crabs eat through their brain.
  89. Horseshoe crabs chase females that run away!
  90. The black disks, also known as ‘ommatidia‘, found in the compound eyes of the horseshoe crab are the largest known retinal receptors in the animal kingdom.
  91. Horseshoe crabs are able to adapt to vast changes in salinity (i.e., they’re euryhaline).
  92. Horseshoe crabs are able to adapt to vast changes in oxygen availability (i.e., they’re euryoxic).
  93. Tracking juvenile horseshoe crabs with your eyes can be a great way to spend time at the beach.hsceyecloseup
  94. You can also track horseshoe crabs and other wildlife with your iPhone while at the beach.
  95. You can get involved in helping stranded horseshoe crabs and ‘Just flip ’em’ (see last picture).
  96. If you are a classroom teacher in Maryland you can raise horseshoe crabs as a way to increase student’s ocean literacy.
  97. Monitoring programs, like this one in Long Island Sound, are helping to advance the understanding of horseshoe crabs and their impact on humans.
  98. Development, pollution, water quality, and over harvesting have impaired the horseshoe crab’s habitat.
  99. Today and in the future we have the chance to protect horseshoe crab populations at a sustainable level for ecological and commercial uses.smilowitz

The world’s horseshoe crab research finally finds a home

This month the Ecological Research & Development Group (ERDG) released a one-stop-shop for research, conservation, and education initiatives on the world’s four species of horseshoe crabs. This was a result of the discussions from the 2011 International Workshop of the Science and Conservation of the Asian Horseshoe Crabs held in Hong Kong.

Be sure to check it out today. There’s lesson plans, peer-reviewed articles, posters, PowerPoint presentations, and more. It’s the intention of the database to serve as a tool to benefit everyone who is in Limulus Love!

I was surprised to learn that the new database includes over 2,000 citations and ERDG is still looking for more materials from people like you and me (Maybe, I’ll submit my cheesy infographic).

Horseshoe Crab Research Database http://horseshoecrab.org/research/

Horseshoe Crab Research Database created by the Ecological Research & Development Group

Do all horseshoe crabs molt?

Once a horseshoe crab reaches their full size they stop molting. Their shells then come to host many sessile creatures, including slipper snails.

Once a horseshoe crab reaches their full size they stop molting. Their shells then come to host many sessile creatures, including slipper snails.

All horseshoe crabs molt – until they reach adulthood. They grow on average a quarter of their size each time they shed. Females grow to be about two feet across and males a bit smaller. Molting occurs several times during the first few years and slows as they age. It usually takes 17 molts to reach sexual maturity  at age 9-11.

Studies have proven that adults do not molt because the age of organisms living of the crab’s shell. For instance, scientists Bottom and Ropes (1988) completed a study to determine that large slipper snails (Crepidula fornicata) were at least 8 years old on a sample of specimens. This would then make the average age of horseshoe crabs in the Delaware Bay to be 17 years old.

Also, the deteriorated carapace of some horseshoe crabs, as well as the presence of internal chitinous rods that hold the carapace in place are also evidence that older horseshoe crabs do not molt.

What happens if the tide leaves a horseshoe crab stranded?

HSC_BCS

It’s not often you stumble across this on the beach. I asked horseshoe crab expert Danielle Chesky, Fishery Management Plan Coordinator with the Atlantic States Marine Fisheries Commission, what was happening in this picture and she said that “they’re dug in for the day after spawning until the high tide comes and they can get back out to sea”. For more posts on horseshoe crabs check out the Limulus Love page. Thank you to a colleague’s in-laws for sending along this picture.

 

What do you spy with a horseshoe crab eye?

What advantages do horseshoe crabs have with their compound eyes (1000 tiny lens less than 1/10 of an inch in diameter)?

Discovery Education produced this video on how horseshoe crabs see as a part of the Science Investigation series. Watch to see how Dr. Robert Barlow from Woods Hole Oceanographic Institute uses a CrabCam to get a glimpse into what Limulus polyphemus detects underwater and why it’s a useful view of the world.

Related articles

It’s as easy as A, B, Sea: H for Horseshoe Crab

 

Horseshoe crabs are an arthropod more closely related to spiders and scorpions than crabs and lobsters. They have a three part body: prosoma (head), opisthosoma (heavy shell with legs under it) and the telson (tail). This amazing body structure has been unchanged for over 200 million years. Interestingly enough, this is this Beach Chair Scientist’s favorite animal and there have been numerous posts about Limulus polyphemus. Read more here.

 

The First Beach Chair Scientist post is about my favorite animal – The Atlantic Horseshoe Crab

Some might say that the horseshoe crab is quite possibly the scariest looking creature along the shoreline. However, I disagree. There’s actually a sweetheart of an animal underneath that tough, pointy, chitin exoskeleton. I am certain that the horseshoe crab has survived since before the time of the dinosaurs due to its ability to adapt and take in stride all conditions (Darwin’s theory of ‘only the strong survive’ should more aptly be taken as ‘the most adaptable species will prevail‘).

The shells that you may see washed up along the coast line are probably molts. Horseshoe crabs have to shed their exoskeleton just like crustaceans. They grow on average a quarter of their size each time they shed. Females grow to be approximately two feet across and males and a bit smaller (which helps for reproductive reasons).

Another reason that the horseshoe crab is a lot less intimidating than one might think is that the pointy ‘tail’ (telson) is not going to sting you at all. It is what helps the animal turn itself over when the ocean currents flip it a bit. For ten months out of the year horseshoe crabs live in the depths of the ocean floor. They are most often seen coming to the shore in May and June.

Image (c) FreeFoto.com

Please visit the Limulus Love page for more information about the Atlantic horseshoe crab.